The Math Section on the New SAT®

The new SAT® will include expanded math topics, such as exponential growth, absolute value, and functional notation, and place greater emphasis on such other topics as linear functions, manipulations with exponents, and properties of tangent lines.

Another change will be the elimination of the quantitative comparison questions. Important skills now measured in the quantitative comparison format, such as estimation and number sense, will continue to be measured through the multiple-choice and student response (grid-in) questions.

<table>
<thead>
<tr>
<th>Time</th>
<th>Content</th>
<th>Item Types</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 minutes:</td>
<td>Number and operations; algebra and functions; geometry; statistics, probability, and data analysis</td>
<td>1. Five-choice multiple-choice questions 2. Student-produced responses</td>
<td>200–800</td>
</tr>
<tr>
<td>• Two 25-min. sections</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• One 20-min. section</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Starting on page 3, you will find a five-page Math Review written specifically to help you prepare your students for the new SAT. It contains Calculator Tips, a list of the Mathematics Content covered in the test, and a review of the Arithmetic, Algebraic, and Geometric Concepts, including symbols and rules, that students will be asked to understand and apply when taking the math section of the new SAT.

Q. Why Change the Math SAT?

A. To better align the Math SAT to classroom practice, new math content that is typically taught in third-year math classes (usually called Algebra II) has been added to the SAT Reasoning Test™. According to the National Center for Education Statistics, 70 percent of all high school students finish Algebra II or the equivalent by the end of their junior year. College Board research indicates that 97 percent of college-bound students complete Algebra II or the equivalent by the time they graduate, and about 75 percent complete four or more years of math. We also know that most four-year colleges require three years of math for incoming freshmen.

Q. Can Students Use a Calculator?

A. Yes. Students can continue to use a four-function, scientific, or graphing calculator. The College Board recommends that students use a calculator at least at the scientific level for the new SAT, although it’s still possible to solve every question without a calculator.

Q. What Can Math Teachers Do to Help Prepare Students for the New SAT?

A. You should continue doing what you do well...teach. The reasoning skills tested, and the content used to test these skills, represent what students are being taught in college-preparatory math classes. The College Board, with the help of teachers and professors on its test review committees, and with the help of NCTM standards, keeps current with the math curriculum and concepts. Students who pay attention in class and take responsibility for learning the material presented will be in great shape for the new SAT.

Q. Has the SAT Ever Changed Before?

A. Yes. The SAT has changed several times since it was first administered in 1926. The SAT evolves to meet the changing needs of students, teachers, and colleges. The most recent changes were made in 1994.
Q. Will the New SAT Math Section Be Harder?
A. No. Although more advanced math concepts will be added, the difficulty level will not change. For example, an arithmetic question could have a higher level of difficulty than an Algebra II question because of the reasoning skills needed to solve the problem.

Q. Will the SAT Subject Tests in Math Be Changed?
A. No. The SAT Subject Test™ in Writing will be discontinued when the new SAT is introduced in March 2005. However, the other SAT Subject Tests are not expected to change, including Subject Tests in Math Level 1 and 2.

Q. How Will the New SAT Be Scored?
A. The test will still be scored on the familiar scale of 200–800. The test has been designed so that a student who would score a 500 on the math section (for example) of the current SAT would score a 500 on the math section of the new test.

Q. Is the Math Section of the New SAT Longer than the Current SAT?
A. No. The math section of the new SAT is administered in two 25-minute sections and one 20-minute section for a total of 70 minutes, which is five minutes shorter than the current SAT math section.

Q. Which Students Should Take the New SAT?
A. Students who are juniors in the year 2004-05 (graduating class of 2006) will be the first class to take the new SAT for college admissions. The College Board recommends that these students take the new PSAT/NMSQT® in the fall of 2004 and the new SAT in the spring of 2005. Taking the new SAT in the spring as juniors will give them the option to take the SAT again in the fall of their senior year.

Math Topics for the New SAT
The topics covered on the math section of the new SAT are listed below. Note that an asterisk (*) indicates new topics that are being added, expanded, or given greater emphasis.

Number and Operations
- Arithmetic word problems
- Percent
- Prime numbers
- Ratio and proportion
- Logical reasoning
- Sets (union, intersection, elements*)
- Properties of integers (even, odd, etc.)
- Divisibility
- Counting techniques
- Sequences and series (including exponential growth*)
- Elementary number theory

Algebra and Functions
- Substitution and simplifying algebraic expressions
- Properties of exponents (including fractional and negative exponents*)
- Algebraic word problems
- Solutions of linear equations and inequalities
- Systems of equations and inequalities
- Quadratic equations
- Rational and radical equations*
- Equations of lines*
- Absolute value*
- Direct and inverse variation
- Qualitative behavior of algebraic functions*
- Newly defined symbols based on commonly used operations

Geometry and Measurement
- Area and perimeter of a polygon
- Area and circumference of a circle
- Volume of a box, cube, and cylinder
- Pythagorean Theorem and special properties of isosceles, equilateral, and right triangles
- Properties of parallel and perpendicular lines*
- Coordinate geometry
- Geometric visualization
- Slope
- Similarity
- Transformations

Data Analysis, Statistics, and Probability
- Data interpretation*
- Statistics (mean, median, and mode)
- Probability
CALCULATOR TIPS

- **Bring a calculator with you**, even if you’re not sure if you will use it. Calculators will not be available at the test center.
- **If you don’t use a calculator regularly**, practice before the test.
- **All questions can be answered without a calculator**. No questions require complicated or tedious calculations.
- **Don’t buy an expensive, sophisticated calculator just to take the test**. Although you can use them for the test, more sophisticated calculators are not required for any problem on the test.
- **Don’t try to use a calculator on every question**. First, decide how you will solve the problem, and then decide whether to use the calculator. The calculator is meant to aid you in problem-solving, not to get in the way.
- **It may help to do scratchwork in the test book**. Get your thoughts down before using your calculator.
- **Make sure your calculator is in good working order and that batteries are fresh**. If your calculator fails during testing, you’ll have to complete the test without it.
- **Take a practice test with a calculator at hand**. This will help you determine how much you will probably use a calculator the day of the test.

MATHEMATICS CONTENT

For the new SAT, the mathematics content level of the test will be raised to include more advanced topics. The following math concepts will be covered beginning with the March 2005 test.

Number and Operation

- Arithmetic word problems (including percent, ratio, and proportion)
- Properties of integers (even, odd, prime numbers, divisibility, etc.)
- Rational numbers
- Logical reasoning
- Sets (union, intersection, elements)
- Counting techniques
- Sequences and series (including exponential growth)
- Elementary number theory

Algebra and Functions

- Substitution and simplifying algebraic expressions
- Properties of exponents
- Algebraic word problems
- Solutions of linear equations and inequalities
- Systems of equations and inequalities
- Quadratic equations
- Rational and radical equations
- Equations of lines
- Absolute value
- Direct and inverse variation
- Concepts of algebraic functions
- Newly defined symbols based on commonly used operations

Geometry and Measurement

- Area and perimeter of a polygon
- Area and circumference of a circle
- Volume of a box, cube, and cylinder
- Pythagorean Theorem and special properties of isosceles, equilateral, and right triangles
- Properties of parallel and perpendicular lines
- Coordinate geometry
- Geometric visualization
- Slope
- Similarity
- Transformations

Data Analysis, Statistics, and Probability

- Data interpretation
- Statistics (mean, median, and mode)
- Probability

ARITHMETIC AND ALGEBRAIC CONCEPTS

- **Integers**: \(-4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots\)

 (Note: zero is neither positive nor negative.)
- **Consecutive Integers**: Integers that follow in sequence; for example, 22, 23, 24, 25. Consecutive integers can be more generally represented by \(n, n + 1, n + 2, n + 3, \ldots \)
- **Odd Integers**: \(-7, -5, -3, -1, 1, 3, 5, 7, \ldots, 2k + 1, \ldots\)

 (Note: \(k \) is an integer)
- **Even Integers**: \(-6, -4, -2, 0, 2, 4, 6, \ldots, 2k, \ldots\)

 (Note: the units digit and the ones digit refer to the same digit. For example, in the number 125, the 5 is called the ones digit or the tens digit.)

Percent

Percent means hundredths, or number out of 100. For example, 40 percent means \(\frac{40}{100} \) or 0.40 or \(\frac{2}{5} \).

Problem 1: If the sales tax on a $30.00 item is $1.80, what is the sales tax rate?

Solution: \(\frac{1.80}{30.00} = \frac{n}{100} \)

\(n = 6 \), so 6% is the sales tax rate.

Percent Increase / Decrease

Problem 2: If the price of a computer was decreased from $1,000 to $750, by what percent was the price decreased?

Solution: The price decrease is the value of \(n \) in the equation \(\frac{250}{1,000} = \frac{n}{100} \). The value of \(n \) is 25, so the price was decreased by 25%.
The two separate speeds 440 km
7 hr = 62 6
7 kilometers per hour.

Average

An average is a statistic that is used to summarize data. The most common type of average is the arithmetic mean. The average (arithmetic mean) of a list of n numbers is equal to the sum of the numbers divided by n. For example, the mean of 2, 3, 5, 7, and 13 is equal to

\[
\frac{2 + 3 + 5 + 7 + 13}{5} = 6
\]

When the average of a list of n numbers is given, the sum of the numbers can be found. For example, if the average of six numbers is 12, the sum of these six numbers is 12 × 6, or 72.

The median of a list of numbers is the number in the middle when the numbers are ordered from greatest to least or from least to greatest. For example, the median of 3, 8, 2, 6, and 9 is 6 because when the numbers are ordered, 2, 3, 6, 8, 9, the number in the middle is 6. When there is an even number of values, the median is the same as the mean of the two middle numbers. For example, the median of 6, 8, 9, 13, 14, and 16 is 11.

The mode of a list of numbers is the number that occurs most often in the list. For example, 7 is the mode of 2, 7, 5, 8, 7, and 12. The numbers 2, 4, 2, 8, 2, 4, 7, 4, 9, and 11 have two modes, 2 and 4.

Note: On the SAT, the use of the word average refers to the arithmetic mean and is indicated by “average (arithmetic mean).” The exception is when a question involves average speed (see problem below). Questions involving median and mode will have those terms stated as part of the question’s text.

Average Speed

Problem: José traveled for 2 hours at a rate of 70 kilometers per hour and for 5 hours at a rate of 60 kilometers per hour. What was his average speed for the 7-hour period?

Solution: In this situation, the average speed is

\[
\text{average speed} = \frac{\text{total distance}}{\text{total time}}
\]

The total distance is 2 hr × \(70 \text{ km/hr}\) + 5 hr × \(60 \text{ km/hr}\) = 440 km. The total time is 7 hours. Thus, the average speed was

\[
\frac{440 \text{ km}}{7 \text{ hr}} = 62\frac{6}{7} \text{ kilometers per hour.}
\]

Note: In this example, the average speed is not the average of the two separate speeds, which would be 65 kilometers per hour.

Factoring

You may need to apply these types of factoring:

\[
x^2 + 2x = x(x + 2)\\
2x^2 - 1 = (x + 1)(x - 1)\\
2x^2 + 3x - 3 = (x - 1)(x + 3)
\]

Probability

Probability refers to the chance that a specific outcome can occur. It can be found by using the following definition when outcomes are equally likely.

\[
\frac{\text{Number of ways that a specific outcome can occur}}{\text{Total number of possible outcomes}}
\]

For example, if a jar contains 13 red marbles and 7 green marbles, the probability that a marble to be selected from the jar at random will be green is

\[
\frac{7}{7 + 13} = \frac{7}{20} = 0.35
\]

If a particular outcome can never occur, its probability is 0. If an outcome is certain to occur, its probability is 1. In general, if p is the probability that a specific outcome will occur, values of p fall in the range 0 ≤ p ≤ 1. Probability may be expressed as either a decimal or a fraction.

Functions

A function is a relation in which each element of the domain is paired with exactly one element of the range. On the SAT, unless otherwise specified, the domain of any function f is assumed to be the set of all real numbers x for which f(x) is a real number. For example, if f(x) = \(\sqrt{x + 2}\), the domain of f is all real numbers greater than or equal to –2. For this function, 14 is paired with 4, since \(f(14) = \sqrt{14 + 2} = \sqrt{16} = 4\).

Note: the \(\sqrt{n}\) symbol represents the positive, or principal, square root. For example, \(\sqrt{16} = 4\), not ± 4.

Exponents

You should be familiar with the following rules for exponents on the SAT.

For all values of a, b, x, y :

\[
x^a \cdot x^b = x^{a + b} \\
(x^a)^b = x^{a \cdot b} \\
(xy)^a = x^a \cdot y^a
\]

For all values of a, b, x ≠ 0, y ≠ 0:

\[
x^a \div x^b = x^{a-b} \\
\left(\frac{x}{y}\right)^a = \frac{x^a}{y^a} \\
x^{-a} = \frac{1}{x^a} \\
\frac{a}{x^b} = \sqrt[a]{\frac{1}{x^b}}. \text{ For example, } \frac{2}{x^3} = \sqrt[2]{\frac{1}{x^3}}.
\]

Note: For any nonzero number x, \(x^0 = 1\).
Sequences

The two most common types of sequences that appear on the SAT are arithmetic and geometric.

An arithmetic sequence is a sequence in which the terms differ by the same constant amount. For example: 3, 5, 7, 9, . . . is an arithmetic sequence.

A geometric sequence is a sequence in which the ratio of successive terms is a constant. For example: 2, 4, 8, 16, . . . is a geometric sequence.

A sequence may also be defined using previously defined terms. For example, the first term of a sequence is 2, and each successive term is 1 less than twice the preceding term. This sequence would be 2, 3, 5, 9, 17, . . .

On the SAT, explicit rules are given for each sequence. For example, in the geometric sequence above, you would not be expected to know that the 5th term is 32 unless you were given the fact that each term is twice the preceding term. For sequences on the SAT, the first term is never referred to as the zeroth term.

Variation

Direct Variation: The variable y is directly proportional to the variable x if there exists a nonzero constant k such that \(y = kx \).

Inverse Variation: The variable x is inversely proportional to the variable y if there exists a nonzero constant k such that \(x = \frac{k}{y} \) or \(xy = k \).

Absolute Value

The absolute value of x is written in the form |x|. For all real numbers x:

\[|x| = \begin{cases}
 x, & \text{if } x \geq 0 \\
 -x, & \text{if } x < 0
\end{cases} \]

For example: \(|2| = 2\), since 2 > 0
\(|-2| = 2\), since −2 < 0
\(|0| = 0\)

GEOMETRIC CONCEPTS

Figures that accompany problems are intended to provide information useful in solving the problems. They are drawn as accurately as possible EXCEPT when it is stated in a particular problem that the figure is not drawn to scale. In general, even when figures are not drawn to scale, the relative positions of points and angles may be assumed to be in the order shown. Also, line segments that extend through points and appear to lie on the same line may be assumed to be on the same line. The text “Note: Figure not drawn to scale.” is included with the figure when degree measures may not be accurately shown and specific lengths may not be drawn proportionally. The following examples illustrate what information can and cannot be assumed from figures.

Example 1:

Since \(\overline{AD} \) and \(\overline{BE} \) are line segments, angles \(\angle ACB \) and \(\angle DCE \) are vertical angles. Therefore, you can conclude that \(x = y \). Even though the figure is drawn to scale, you should NOT make any other assumptions without additional information. For example, you should NOT assume that \(AC = CD \) or that the angle at vertex E is a right angle even though they might look that way in the figure.

Example 2:

A question may refer to a triangle such as \(\triangle ABC \) above. Although the note indicates that the figure is not drawn to scale, you may assume the following:

- \(\triangle ABD \) and \(\triangle DBC \) are triangles.
- \(D \) is between \(A \) and \(C \).
- \(A, D, \) and \(C \) are points on a line.
- The length of \(\overline{AD} \) is less than the length of \(\overline{AC} \).
- The measure of angle \(\angle ABD \) is less than the measure of angle \(\angle ABC \).

You may not assume the following:

- The length of \(\overline{AD} \) is less than the length of \(\overline{DC} \).
- The measures of angles \(\angle BAD \) and \(\angle BDA \) are equal.
- The measure of angle \(\angle ABD \) is greater than the measure of angle \(\angle DBC \).
- Angle \(\angle ABC \) is a right angle.

Geometric Skills and Concepts

Properties of Parallel Lines

1. If two parallel lines are cut by a third line, the alternate interior angles are congruent.
\[c = x \text{ and } w = d \]
2. If two parallel lines are cut by a third line, the corresponding angles are congruent.
 \[a = w, \ c = y, \ b = x, \text{ and } d = z \]

3. If two parallel lines are cut by a transversal, the sum of the measures of the interior angles on the same side of the transversal is 180°.
 \[c + w = 180 \quad \text{and} \quad d + x = 180 \]

Angle Relationships

1. The sum of the measures of the interior angles of a triangle is 180°.
 \[x = 70 \quad \text{because} \quad 60 + 50 + x = 180 \]

2. When two lines intersect, vertical angles are congruent.
 \[y = 50 \]

3. A straight angle measures 180°.
 \[z = 130 \quad \text{because} \quad z + 50 = 180 \]

4. The sum of the measures of the interior angles of a polygon can be found by drawing all diagonals of the polygon from one vertex and multiplying the number of triangles formed by 180°.

 Since the polygon is divided into 3 triangles, the sum of the measures of the angles is 3 × 180°, or 540°.

 Unless otherwise noted, in the SAT, the term “polygon” will be used to mean a convex polygon; that is, a polygon in which each interior angle has a measure of less than 180°.

 A polygon is “regular” if all sides are congruent and all angles are congruent.

Side Relationships

1. Pythagorean Theorem: In any right triangle,
 \[a^2 + b^2 = c^2, \] where \(c \) is the length of the longest side and \(a \) and \(b \) are the lengths of the two shorter sides.

 To find the value of \(x \), use the Pythagorean Theorem.
 \[x^2 = 3^2 + 4^2 \]
 \[x^2 = 9 + 16 \]
 \[x^2 = 25 \]
 \[x = \sqrt{25} = 5 \]

2. In any equilateral triangle, all sides are congruent and all angles are congruent.

 Because the measure of the unmarked angle is 60°, the measure of all angles of the triangle are equal; and, therefore, the lengths of all sides of the triangle are equal.
 \[x = y = 10 \]

3. In an isosceles triangle, the angles opposite congruent sides are congruent. Also, the sides opposite congruent angles are congruent. In the figures below, \(a = b \) and \(x = y \).

4. In any triangle, the longest side is opposite the largest angle, and the shortest side is opposite the smallest angle. In the figure below, \(a < b < c \).

5. Two polygons are similar if and only if the lengths of their corresponding sides are in the same ratio and the measures of their corresponding angles are equal.

 If polygons \(ABCDEF \) and \(GHIJKL \) are similar and where \(\overline{AF} \) and \(\overline{GL} \) are corresponding sides, then
 \[\frac{AF}{GL} = \frac{10}{5} = \frac{2}{1} = \frac{BC}{HI} = \frac{18}{x}. \] Therefore, \(x = 9 \).

Note: \(\overline{AF} \) means the line segment with endpoints \(A \) and \(F \).

\(AF \) means the length of \(\overline{AF} \).
Area and Perimeter

Rectangles
Area of a rectangle = length × width = ℓ × w
Perimeter of a rectangle = 2(ℓ + w) = 2ℓ + 2w

Circles
Area of a circle = πr² (where r is the radius)
Circumference of a circle = 2πr = πd (where d is the diameter)

Triangles
Area of a triangle = \frac{1}{2}(\text{base} \times \text{altitude})
Perimeter of a triangle = the sum of the lengths of the three sides

The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.

Volume
Volume of a rectangular solid (or cube) = ℓ × w × h
(ℓ is the length, w is the width, and h is the height)
Volume of a right circular cylinder = πr²h
(r is the radius of the base, and h is the height)

Be familiar with what formulas are provided in the Reference Information with the test directions. Refer to the test directions in sample tests.

Coordinate Geometry

1. In questions that involve the x- and y-axes, x-values to the right of the y-axis are positive and x-values to the left of the y-axis are negative. Similarly, y-values above the x-axis are positive and y-values below the x-axis are negative. In an ordered pair (x, y), the x-coordinate is written first. For example, in the pair (-2, 3), the x-coordinate is -2 and the y-coordinate is 3.

2. Slope of a line = \frac{\text{rise}}{\text{run}} = \frac{\text{change in y coordinates}}{\text{change in x coordinates}}

\text{Slope of } \overline{PQ} = \frac{4}{2} = 2
\text{Slope of } \ell = \frac{1 - (-2)}{-2 - 2} = \frac{-3}{4}

A line that slopes upward as you go from left to right has a positive slope. A line that slopes downward as you go from left to right has a negative slope. A horizontal line has a slope of zero. The slope of a vertical line is undefined.

Parallel lines have the same slope. The product of the slopes of two perpendicular lines is -1, provided the slope of each of the lines is defined. For example, any line perpendicular to line \ell above has a slope of \frac{4}{3}.

The equation of a line can be expressed as \(y = mx + b \), where \(m \) is the slope and \(b \) is the y-intercept. Since the slope of line \ell is \(-\frac{3}{4}\), the equation of line \ell can be expressed as \(y = -\frac{3}{4}x + b \). Since the point (-2, 1) is on the line, 1 = \frac{3}{2} + b, so \(b = -\frac{1}{2} \) and the equation of line \ell is \(y = -\frac{3}{4}x - \frac{1}{2} \).

3. The equation of a parabola can be expressed as \(y = a(x - h)^2 + k \), where the vertex of the parabola is at the point \((h, k)\) and \(a \neq 0\). If \(a > 0\), the parabola opens upward; and if \(a < 0\), the parabola opens downward.

The parabola above has its vertex at (-2, 4). Therefore, \(h = -2 \) and \(k = 4 \). The equation can be represented by \(y = a(x + 2)^2 + 4 \). Since the parabola opens downward, we know that \(a < 0 \). To find the value of \(a\), you also need to know another point on the parabola. Since we know the parabola passes through the point \((1, 1)\), \(1 = a(1 + 2)^2 + 4 \), so \(a = \frac{-1}{3} \). Therefore, the equation for the parabola is \(y = -\frac{1}{3}(x + 2)^2 + 4 \).
The College Board: Connecting Students to College Success

The College Board is a not-for-profit membership association whose mission is to connect students to college success and opportunity. Founded in 1900, the association is composed of more than 4,500 schools, colleges, universities, and other educational organizations. Each year, the College Board serves over three million students and their parents, 23,000 high schools, and 3,500 colleges through major programs and services in college admissions, guidance, assessment, financial aid, enrollment, and teaching and learning. Among its best-known programs are the SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College Board is committed to the principles of excellence and equity, and that commitment is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com.

College Board Offices

National Office
45 Columbus Avenue, New York, NY 10023-6992
212-713-8000
212 713-8255 (fax)

Middle States Regional Office
Serving Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania, and Puerto Rico
Two Bala Plaza, Suite 900, Bala Cynwyd, PA 19004-1501
610 667-4400
610 227-2580 (fax)

Midwestern Regional Office
Serving Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, West Virginia, and Wisconsin
1560 Sherman Avenue, Suite 1001, Evanston, IL 60201-4805
847 866-1700
847 448-7943 (fax)

New England Regional Office
Serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont
470 Totten Pond Road, Waltham, MA 02451-1982
781 890-9150
781 663-2743 (fax)

Southern Regional Office
Serving Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia
3700 Crestwood Parkway NW, Suite 700, Duluth, GA 30096-7155
770 908-9737
770 225-4062 (fax)

Southwestern Regional Office
Serving Arkansas, New Mexico, Oklahoma, and Texas
4330 South MoPac Expressway, Suite 200, Austin, TX 78735-6735
512 891-8400
512 721-1841 (fax)

Western Regional Office
2099 Gateway Place, Suite 550, San Jose, CA 95110-1051
408 452-1400
408 367-1459 (fax)

Copyright © 2004 by College Entrance Examination Board. All rights reserved. College Board, Advanced Placement Program, AP, SAT, and the acorn logo are registered trademarks of the College Entrance Examination Board. Connect to college success, SAT Reasoning Test, and SAT Subject Test are trademarks owned by the College Entrance Examination Board. PSAT/NMSQT is a registered trademark of the College Entrance Examination Board and National Merit Scholarship Corporation. All other products and services may be trademarks of their respective owners. Visit College Board on the Web: www.collegeboard.com.